Abstract

In this paper a generalized expression for the complex power radiated by an element in an infinite planar array antenna is derived. Since this power formula applies to a large class of phased array antennas where the aperture field distribution can be completely specified (in normal mode form), it proves to be a powerful, unifying principle. The utility of this approach is illustrated by the simplicity with which previously known results can be derived; e.g., an infinite array of slots in a ground plane and an infinite array of flat dipoles with or without a ground plane. Further demonstrations of the usefulness of the power formula are provided by the systematic and straightforward solutions of the less-well-known problems of infinite arrays of crossed-dipole pairs and infinite arrays of open-ended rectangular waveguides. The waveguide array solution is particularly interesting because it reduces to a set of equations which are identical to those one would use to characterize an N-port network on an admittance basis (N is the number of waveguide modes). Since the power formula is derived for a parallelogram element Lattice, the resultant solution for a specific type of element is in its most general form. Expressions for the scan-dependent, dominant mode radiation admittance and the element gain function for a multimode rectangular waveguide radiator are also derived. In addition, various aspects of the waveguide array solution are investigated in the light of previous studies of infinite arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.