Abstract
The radial (or Laplacian) masa in a free group factor is the abelian von Neumann algebra generated by the sum of the generators (of the free group) and their inverses. The main result of this paper is that the radial masa is a maximal injective von Neumann subalgebra of a free group factor. We also investigate tensor products of maximal injective algebras. Given two inclusions $B_i\subset M_i$ of type $\mathrm{I}$ von Neumann algebras in finite von Neumann algebras such that each $B_i$ is maximal injective in $M_i$, we show that the tensor product $B_1 \bar{\otimes} B_2$ is maximal injective in $M_1 \bar{\otimes} M_2$ provided at least one of the inclusions satisfies the asymptotic orthogonality property we establish for the radial masa. In particular it follows that finite tensor products of generator and radial masas will be maximal injective in the corresponding tensor product of free group factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.