Abstract
We show that if A is a Hilbert–space operator, then the set of all projections onto hyperinvariant subspaces of A, which is contained in the von Neumann algebra υN(A) that is generated by A, is independent of the representation of υ N(A), thought of as an abstract W*–algebra. We modify a technique of Foias, Ko, Jung and Pearcy to get a method for finding nontrivial hyperinvariant subspaces of certain operators in finite von Neumann algebras. We introduce the B–circular operators as a special case of Speicher's B–Gaussian operators in free probability theory, and we prove several results about a B–circular operator z, including formulas for the B–valued Cauchy– and R–transforms of z*z. We show that a large class of L∞([0,1])–circular operators in finite von Neumann algebras have nontrivial hyperinvariant subspaces, and that another large class of them can be embedded in the free group factor L(F3). These results generalize some of what is known about the quasinilpotent DT–operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.