Abstract

Proanthocyanidins (PAs) are flavonoid compounds with important defensive roles in plants. The application of PAs in industries such as the pharmaceutical industry has led to increased interest in enhancing their biosynthesis. In Arabidopsis thaliana, PAs are biosynthesized under the regulation of an R2R3-MYB transcription factor TRANSPARENT TESTA 2 (TT2), which can interact with other proteins, including TRANSPARENT TESTA GLABRA 1 (TTG1), while also regulating a plant's response to abiotic stressors. However, the regulation of PA biosynthesis in the high-value medicinal plant Panax ginseng (ginseng) has not yet been studied. Understanding the mechanism of PAs biosynthesis regulation in ginseng may be helpful in increasing the plant's range of pharmacological applications. This study found that the overexpression of PgTT2 increased PA biosynthesis by an average of 67.3% in ginseng adventitious roots and 50.5% in arabidopsis seeds. Furthermore, transgenic arabidopsis plants overexpressing PgTT2 produced increased reactive oxygen species (ROS) scavenging ability by influencing abscisic acid synthesis and signaling. However, under high salinity stress, seed germination and growth rate of seedlings were decreased. An expression analysis of plants facing salt stress revealed increased transcripts of an ABA biosynthetic gene, NCED3, and ABA signaling genes ABI5 and ABI3. Moreover, the PgTT2 protein showed a direct interaction with PgTTG1 in yeast two-hybrid assays. This study therefore reveals novel information on the transcriptional regulation of PA production in ginseng and shows how PgTT2 influences the ABA response pathway to regulate responses to ROS and salt stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call