Abstract

AbstractThe common element of quenched instationary polymerization systems is that at a given time all radicals present are deactivated by an efficient and fast quench reaction. Quenched instationary polymerizations can be carried out in a variety of ways distinguished by the way periods differing in their initiation characteristics are combined. The total chain length distribution of the resulting polymer is always the sum of the quenched radical and polymer chain length distribution. This distribution is either completely or at least partially dominated by the contribution of the quenched radical spectrum. Depending on the experimental conditions monomodal or multimodal distributions are obtained which can be characterized by their extrema (maximum, points of inflection) and peak widths (absolute, relative). The location of the extrema are related to the experimental parameters and can be used in an unambiguous way for the direct determination of the rate constant of propagation. Absolute peak widths (defined as the difference between two succeeding points of inflection) are invariant quantities with respect to the number, molar mass and hyper distribution which is only true for Poisson (and narrow Gauss) distributions. Relative peak widths are a valuable tool for the direct determination of axial dispersion which occurs in size exclusion chromatography. Comparison of experimental and ideal relative peak widths can be used for the direct determination of the axial dispersion. The influence of the type of termination and [R0] (termination by combination) on the total (number) chain length distribution for single δ‐pulse initiation.magnified imageThe influence of the type of termination and [R0] (termination by combination) on the total (number) chain length distribution for single δ‐pulse initiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call