Abstract
Abstract A two-component study is undertaken of the classical quasigeostrophic (QG) omega equation. First, a reappraisal is undertaken of extant formulations of the equation’s so-called forcing function. It pinpoints shortcomings of various formulations and prompts consideration of alternative forms. Particular consideration is given to the contribution of flow deformation to the forcing function, and to the role of the advection of the geostrophic flow by the thermal wind (the R vector). The latter is closely related to the Q vector, the horizontal component of the ageostrophic vorticity, and the forcing function itself. The reexamination promotes further examination of the physical interpretation and diagnostic use of the omega equation particularly for assessing richly structured subsynoptic flow features. Second, consideration is given to the dynamics associated with the equation and its more general utility. It is shown that the R vector is intrinsic to a quasigeostrophic cascade to finer-scaled flow, and that a fundamental feature of the QG omega equation—the in-phase relationship between cloud-diabatic heating and the attendant vertical velocity—has important potential ramifications for the assimilation of data in numerical weather prediction (NWP) models. Finally, it is shown that, in the context of considering NWP model output, mild generalizations of the quasigeostrophic R vector retain interpretative value for flow settings beyond geostrophy and warrant consideration when addressing some contemporary NWP challenges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.