Abstract

Unconditionally secure two-party bit commitment based solely on the principles of quantum mechanics (without exploiting special relativistic signalling constraints, or principles of general relativity or thermodynamics) has been shown to be impossible, but the claim is repeatedly challenged. The quantum bit commitment theorem is reviewed here and the central conceptual point, that an `Einstein-Podolsky-Rosen' attack or cheating strategy can always be applied, is clarified. The question of whether following such a cheating strategy can ever be disadvantageous to the cheater is considered and answered in the negative. There is, indeed, no loophole in the theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.