Abstract

A comprehensive understanding of the biomechanical properties of the medial patellofemoral complex (MPFC) is necessary when performing an MPFC reconstruction. How components of the MPFC change over the course of flexion can influence the surgeon's choice of location for graft fixation along the extensor mechanism. The purpose of this study was to (1) determine native MPFC length changes throughout a 90° arc using an anatomically based attachment and using Schöttle's point, and (2) compare native MPFC length changes with different MPFC attachment sites along the extensor mechanism. Eight fresh-frozen (n = 8), cadaveric knees were dissected of all soft tissue structures except the MPFC. The distance between the femoral footprint (identified through anatomical landmarks and Schottle's point) and the MPFC was calculated at four attachment sites along the extensor mechanism [midpoint of the patella [MP], the center of the osseous footprint of the MPFC (FC), the superomedial corner of the patella at the quadriceps insertion (SM), and the proximal extent of the MPFC along the quadriceps tendon (QT)] at 0°, 20°, 40°, 60°, and 90° of flexion. Length changes were investigated between the MPFL femoral attachment site and the radiographic surrogate of the MPFL attachment site, Schottle's Point (SP). Paired t tests at each of the four components showed no differences in length change from 0° to 90° when comparing SP to the anatomic MPFC insertion. MPFL length changes from 0° to 90° were greatest at the QT point (13.9 ± 3.0mm) and smallest at the MP point (2.7 ± 4.4mm). The FC and SM points had a length change of 6.6 ± 4.2 and 9.0 ± 3.8, respectively. Finally, when examining how the length of the MPFC components changed through flexion, the greatest differences were seen at QT where all comparisons were significant(p<0.01) except when comparing 0° vs 20° (n.s.). The MPFC demonstrates the most significant length changes between 0° and 20° of flexion, while more isometric behavior was seen during 20°-90°. The attachment points along the extensor mechanism demonstrate different length behaviors, where the more proximal components of the MPFC display greater anisometry through the arc of motion. When performing a proximal MPFC reconstruction, surgeons should expect increased length changes compared to reconstructions utilizing distal attachment sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.