Abstract
This paper presents a novel approach for dealing with the structural risk minimization (SRM) applied to a general setting of the machine learning problem. The formulation is based on the fundamental concept that supervised learning is a bi-objective optimization problem in which two conflicting objectives should be minimized. The objectives are related to the empirical training error and the machine complexity. In this paper, one general Q-norm method to compute the machine complexity is presented, and, as a particular practical case, the minimum gradient method (MGM) is derived relying on the definition of the fat-shattering dimension. A practical mechanism for parallel layer perceptron (PLP) network training, involving only quasi-convex functions, is generated using the aforementioned definitions. Experimental results on 15 different benchmarks are presented, which show the potential of the proposed ideas.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have