Abstract

A novel, easily removable and modifiable silicon-tethered pyridyldiisopropylsilyl directing group for C-H functionalizations of arenes has been developed. The installation of the pyridyldiisopropylsilyl group can efficiently be achieved via two complementary routes using easily available 2-(diisopropylsilyl)pyridine (5). The first strategy features a nucleophilic hydride substitution at the silicon atom in 5 with aryllithium reagents generated in situ from the corresponding aryl bromides or iodides. The second milder route exploits a highly efficient room-temperature rhodium(I)-catalyzed cross-coupling reaction between 5 and aryl iodides. The latter approach can be applied to the preparation of a wide range of pyridyldiisopropylsilyl-substituted arenes possessing a variety of functional groups, including those incompatible with organometallic reagents. The pyridyldiisopropylsilyl directing group allows for a highly efficient, regioselective palladium(II)-catalyzed mono-ortho-acyloxylation and ortho-halogenation of various aromatic compounds. Most impor-tantly, the silicon-tethered directing group in both acyloxylated and halogenated products can easily be removed or efficiently converted into an array of other valuable functionalities. These transformations include protio-, deuterio-, halo-, boro-, and alkynyldesilylations, as well as a conversion of the directing group into the hydroxy functionality. In addition, the construction of aryl-aryl bonds via the Hiyama-Denmark cross-coupling reaction is feasible for the acetoxylated products. Moreover, the ortho-halogenated pyridyldiisopropylsilylarenes, bearing both nucleophilic pyridyldiisopropylsilyl and electrophilic aryl halide moieties, represent synthetically attractive 1,2-ambiphiles. A unique reactivity of these ambiphiles has been demonstrated in efficient syntheses of arylenediyne and benzosilole derivatives, as well as in a facile generation of benzyne. In addition, preliminary mechanistic studies of the acyloxylation and halogenation reactions have been performed. A trinuclear palladacycle intermediate has been isolated from a stoichiometric reaction between diisopropyl-(phenyl)pyrid-2-ylsilane (3a) and palladium acetate. Furthermore, both C-H functionalization reactions exhibited equally high values of the intramolecular primary kinetic isotope effect (kH/kD = 6.7). Based on these observations, a general mechanism involving the formation of a palladacycle via a C-H activation process as the rate-determining step has been proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.