Abstract

Bitcoin, a cryptocurrency built on the blockchain data structure, has generated significant academic and commercial interest. Contrary to prior expectations, recent research has shown that participants of the protocol (the so-called “miners”) are not always incentivized to follow the protocol. We study the game induced by one such attack – the pool block withholding attack – in which mining pools (groups of miners) attack other mining pools. We focus on the case of two pools attacking each other, with potentially other mining power in the system.We show that this game always admits a pure Nash equilibrium, and its pure price of anarchy, which intuitively measures how much computational power can be wasted due to attacks in an equilibrium, is at most 3. We conjecture, and prove in special cases, that it is in fact at most 2. Our simulations provide compelling evidence for this conjecture, and show that players can quickly converge to the equilibrium by following best response strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.