Abstract

Interferon (IFN)-inducible human MxA protein mediates resistance against influenza and several other RNA viruses. The MxA gene is under the control of type I IFN and, in certain cell types, is also directly activated by viruses. Here we show that in human macrophages, MxA mRNA levels are upregulated by very low doses of IFN-alpha in a dose-dependent manner. A similar, albeit much weaker, dose-dependent induction was seen with IFN-gamma. The induction was rapid and independent of protein synthesis. Interleukin-6 (IL-6) or tumor necrosis factor-alpha (TNF-alpha) did not influence MxA mRNA levels alone or in combination with IFNs, in spite of the presence of putative response elements of these cytokines in the MxA promoter. We show that the promoter of the MxA gene contains two functional IFN-stimulated response elements (ISRE) near the transcription start site and one homologous ISRE-like element, which is apparently nonfunctional, further upstream. The two proximal ISRE sites are essential for IFN-alpha-induced transcription and appear to be binding sites for IFN-stimulated gene factor 3 complex. In addition, EMSA and DNAse I footprinting analysis demonstrated that Spl binds with high affinity to a region encompassing nucleotides -25 and -50 and, thus, may provide means of interaction with the basal transcriptional machinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.