Abstract
Here we identify Viperin as a highly inducible gene in response to lipopolysaccharide (LPS), double-stranded RNA (poly(I-C)) or Sendai virus (SV). The only known function of Viperin relates to its ability to inhibit human Cytomegalovirus replication. Very little data are available on the regulation of this gene. In silico analysis of the promoter identified two interferon (IFN)-stimulated response elements (ISRE), which in other genes bind IRF3 or the IFN-stimulated gene factor-3 (ISGF3) complex. LPS and poly(I-C) induce very high levels of Viperin in wild type cells but not in cells deficient in TRIF, TBK1, IRF3, or the type I IFNalpha/betaR. SV-induced Viperin gene expression was mediated independently of Toll-like receptor (TLR) signaling by retinoic acid-inducible gene (RIG-I) and the downstream adapter, mitochondrial anti-viral signaling (MAVS). Virus-induced Viperin expression was not attenuated in macrophages deficient in either TBK1 or IKKepsilon alone. Moreover, IRF3-deficient, but not IFNalpha/betaR deficient, macrophages still induced Viperin in response to SV. Promoter reporter studies combined with DNA immunoprecipitation assays identified the ISGF3 complex as the key regulator of Viperin gene expression. Moreover, positive regulatory domain I-binding factor 1 (PRDI-BF1, also called BLIMP1) binds the ISRE sites and competes with ISGF3 binding in a virus inducible manner to inhibit Viperin transcription. Collectively, these studies identify Viperin as a tightly regulated ISGF3 target gene, which is counter-regulated by PRDI-BF1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.