Abstract

Cytochrome c oxidase is an electron-transfer driven proton pump. In this paper, we propose a complete chemical mechanism for the enzyme's proton-pumping site. The mechanism achieves pumping with chemical reaction steps localized at a redox center within the enzyme; no indirect coupling through protein conformational changes is required. The proposed mechanism is based on a novel redox-linked transition metal ligand substitution reaction. The use of this reaction leads in a straightforward manner to explicit mechanisms for achieving all of the processes previously determined (Blair, D.F., Gelles, J. and Chan, S.I. (1986) Biophys. J. 50, 713–733) to be needed to accomplish redox-linked proton pumping. These processes include: (1) modulation of the energetics of protonation/deprotonation reactions and modulation of the energetics of redox reactions by the structural state of the pumping site; (2) control of the rates of the pump's redox reactions with its electron-transfer partners during the turnover cycle (gating of electrons); and (3) regulation of the rates of the protonation/deprotonation reactions between the pumping site and the aqueous phases on the two sides of the membrane during the reaction cycle (gating of protons). The model is the first proposed for the cytochrome oxidase proton pump which is mechanistically complete and sufficiently specific that a realistic assessment can be made of how well the model pump would function as a redox-linked free-energy transducer. This assessment is accomplished via analyses of the thermodynamic properties and steady-state kinetics expected of the model. These analyses demonstrate that the model would function as an efficient pump and that its behavior would be very similar to that the model would oxidase both in the mitochondrion and in purified preparations. The analysis presented here leads to the following important general conclusions regarding the mechanistic features of the oxidase proton pump. (1) A workable proton-pump mechanism does not require large protein conformational changes. (2) A redox-linked proton pump need not display a pH-dependent midpoint potential, as has frequently been assumed. (3) Mechanisms for redox-linked proton pumps that involve transition metal ligand exchange reactions are quite attractive because such reactions readily lend themselves to the linked gating processes necessary for proton pumping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.