Abstract

Introduction: Numerous pieces of evidence demonstrated that isoflurane induces hippocampal cell injury and cognitive impairments. Picroside II has been investigated for its anti-apoptosis and antioxidant neuroprotective effects. We aimed to explore the protective effects of picroside II and the role of microRNA-195 (miR-195) on isoflurane-induced neuronal injury in rats. Methods: The Morris water maze test was used to evaluate the effects of isoflurane on rats regarding escape latency and time in quadrant parameters. Real-time quantitative PCR was used to detect the expression levels of miR-195 and pro-inflammatory cytokines, including inter­leukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) mRNA, in the hippocampal tissues and neuronal cells. Results: The picroside II significantly improves isoflurane-induced higher escape latency and lower time spent in the quadrant compared with the control rats. Picroside II also promotes cell viability and suppresses cell apoptosis of isoflurane-induced neuronal cells. Besides, picroside II suppresses the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and miR-195 in vivo and in vitro. Furthermore, overexpression of miR-195 abrogates the effects of picroside II on the expression of pro-inflammatory cytokines. The appropriate dose of picroside II is 20 mg/kg. Conclusion: Picroside II could protect the nervous system possibly through inhibiting the inflammatory response in the isoflurane-induced neuronal injury of rats. The protective effect of picroside II may be achieved by downregulating the expression of miR-195 and then inhibiting the inflammatory response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call