Abstract

Test application at reduced power supply voltage (or VLV testing) is a cost-effective way to increase the defect coverage of a test set. Resistive short defects are a major contributor to this coverage increase. Using a probabilistic model of these defects, we quantify the coverage impact of VLV testing for different voltages. When considering the coverage increase, we differentiate between defects missed by the test set at nominal voltage and undetectable defects (flaws) detected by VLV testing. In our analysis, the performance degradation of the device caused by lower power supply voltage is accounted for. Furthermore, we describe a situation in which defects detected by conventional testing are missed by VLV testing and quantify the resulting coverage loss. We report the numbers on the increased defect coverage, flaw coverage, and coverage loss for ISCAS circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.