Abstract

ABSTRACT Wind and jet are important medium of active galactic nucleus (AGN) feedback thus it is crucial to obtain their properties for the feedback study. In this paper we investigate the properties of wind and jet launched from a magnetized super-Eddington accretion flow around a supermassive black hole. For this aim, we have performed radiation magnetohydrodynamical simulation of a magnetically arrested super-Eddington accretion flows. We then have analysed the simulation data by the ‘virtual particle trajectory’ approach and obtained the mass flux, poloidal, and toroidal velocities, and mass-flux-weighted momentum and energy fluxes of wind and jet. The mass flux is found to be two to six times higher than that obtained based on the time-averaged streamline method widely used in literature. The momentum flux of wind is found to be larger than that of jet, while the total energy flux of jet is at most three times larger than that of wind. These results are similar to the case of hot accretion flows and imply that winds likely play a more important role than jet in AGN feedback. The acceleration mechanism of wind and jet is analysed and found to be dominated by Lorentz force rather than radiation force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call