Abstract

The Bose – Chaudhuri – Hocquenghem type of linear cyclic codes (BCH codes) is one of the most popular and widespread error-correcting codes. Their close connection with the theory of Galois fields gave an opportunity to create a theory of the norms of syndromes for BCH codes, namely, syndrome invariants of the G-orbits of errors, and to develop a theory of polynomial invariants of the G-orbits of errors. This theory as a whole served as the basis for the development of effective permutation polynomial-norm methods and error correction algorithms that significantly reduce the influence of the selector problem. To date, these methods represent the only approach to error correction with non-primitive BCH codes, the multiplicity of which goes beyond design boundaries. This work is dedicated to a special error-correcting code class – generic Bose – Chaudhuri – Hocquenghem codes or simply GBCH-codes. Sufficiently accurate evaluation of the quantity of such codes in each length was produced during our work. We have investigated some properties and connections between different GBCH-codes. Special attention was devoted to codes with constructive distances of 3 and 5, as those codes are usual for practical use. Their almost complete description is given in the range of lengths from 7 to 107. The paper contains a fairly clear theoretical classification of GBCH-codes. Special attention is paid to the corrective capabilities of the codes of this class, namely, to the calculation of the minimal distances of these codes with various parameters. The codes are found whose corrective capabilities significantly exceed those of the well-known GBCH-codes with the same design parameters.

Highlights

  • The Bose – Chaudhuri – Hocquenghem type of linear cyclic codes (BCH codes) is one of the most popular and widespread error-correcting codes. Their close connection with the theory of Galois fields gave an opportunity to create a theory of the norms of syndromes for BCH codes, namely, syndrome invariants of the G-orbits of errors, and to develop a theory of polynomial invariants of the G-orbits of errors

  • This theory as a whole served as the basis for the development of effective permutation polynomial-norm methods and error correction algorithms that significantly reduce the influence of the selector problem

  • These methods represent the only approach to error correction with non-primitive BCH codes, the multiplicity of which goes beyond design boundaries

Read more

Summary

Обобщенным двоичным кодом

Формально, имеется n – 1 различных обобщенных кодов Хемминга длиной n. Что в реальности их имеется существенно меньше. В принятых выше обозначениях для сопряженных элементов γ и γ2 обобщенные коды Хемминга длины n с проверочными матрицами H1 = [γ i ] и H 2 = [γ 2i ] совпадают. Доказательство сводится к установлению того факта, что ядра матриц H1 и H2 совпадают. Введем следующее обозначение: пусть (i1,i2 ,...,il ) – вектор с координатами 0 и 1, у которого координаты 1 стоят на местах с номерами i1,i2 ,...,il. Пусть c = (i1,i2 ,...,iπ ) – кодовое слово первого кода, т.

Проверочные матрицы
Столбцы матрицы
Условиям предложения удовлетворяет обобщенный
Всего кодов
Список использованных источников
Information about the authors
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call