Abstract
A series of La1−x Sr x Cr1−y Ru y O3−δ (0.1 ≤ x ≤ 0.5, 0.05 ≤ y ≤ 0.15) materials was prepared by the sol–gel method to develop alternative catalysts for propane steam reforming. Catalyst characteristics were evaluated using physicochemical methods including X-ray diffraction, Brunauer–Emmett–Teller methods, H2 temperature-programmed reduction, and thermogravimetry analysis (TGA). Effects of the amount of ruthenium (Ru) and strontium and the steam-to-carbon ratio (S/C) were investigated. An increase in Ru content led to increased propane conversion and H2 yield, especially below 700 °C. Dramatic enhancement of catalytic activity was observed with La0.8Sr0.2Cr0.85Ru0.15O3 under 600 °C, achieving propane conversion over 79% between 600 and 800 °C with maximum propane conversion and H2 yield of 98.3% and 63.3%, respectively. Also, good resistance to carbon formation for the La0.8Sr0.2Cr0.85Ru0.15O3 catalyst was confirmed by long-term testing and TGA analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have