Abstract
Six gravitational wave events have been reported by the LIGO-Virgo collaboration (LVC), five of them associated with black hole binary (BHB) mergers and one with a double neutron star (DNS) merger, while the coalescence of a black hole-neutron star (BHNS) binary is still missing. We investigate the progenitors of double compact object binaries with our population-synthesis code MOBSE. MOBSE includes advanced prescriptions for mass loss by stellar winds (depending on metallicity and on the Eddington ratio) and a formalism for core-collapse, electron-capture and (pulsational) pair instability supernovae. We investigate the impact of progenitor's metallicity, of the common-envelope parameter $\alpha{}$ and of the natal kicks on the properties of DNSs, BHNSs and BHBs. We find that neutron-star (NS) masses in DNSs span from 1.1 to 2.0 M$_\odot$, with a preference for light NSs, while NSs in merging BHNSs have mostly large masses ($1.3-2.0$ M$_\odot$). BHs in merging BHNSs are preferentially low mass ($5-15$ M$_\odot$). BH masses in merging BHBs strongly depend on the progenitor's metallicity and span from $\sim{}5$ to $\sim{}45$ M$_\odot$. The local merger rate density of both BHNSs and BHBs derived from our simulations is consistent with the values reported by the LVC in all our simulations. In contrast, the local merger rate density of DNSs matches the value inferred from the LVC only if low natal kicks are assumed. This result adds another piece to the intricate puzzle of natal kicks and DNS formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.