Abstract

Liquid crystals may possess macroscopically aligned structural, electrical and optical properties when oriented in external fields which leads to a wide range of applications including optical filters, displays, and data storage devices. Combining the properties of thermosets [1, 2] with the properties of liquid crystals (LC) is a logical step towards creating new materials. The development of liquid crystalline thermosets (LCT) has been motivated by their potential use in structural applications and the need for more adaptable polymeric materials with tunable strength and stiffness as well as tailored mechanical anisotropy. It is known that mechanical properties of conventional thermosets are determined by many factors including curing agent, filler, degree of cure, crosslink density, glass transition temperature, and accelerator. In LCT's all of these factors will ultimately be controlled by the both the molecular organization and orientation of the LC phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call