Abstract
A new class of liquid crystalline thermosets (LCTs) was successfully produced containing lyotropic cellulose nanocrystals (CNCs) as the primary mesogenic component (up to 72 wt%) by the addition of non-mesogenic epoxy monomers. Cellulose-based LCTs were produced by totally aqueous processing methods and ultimately cured at elevated temperatures to produce ordered networks of ‘frozen’ liquid crystalline (LC) phases. Various degrees of birefringence were obtained via self-assembly of CNCs into oriented phases as observed by polarized optical microscopy and transmission electron microscopy. X-ray diffraction measurements highlighted the effects of texture of CNCs within LCT films compared to lyophilized CNCs. Cellulose-based LCT films uniquely exhibited thermo-mechanical properties of both traditional LCTs and LC elastomers, such as high elastic modulus (~1 GPa) under ambient conditions and low glass transition temperature (~−25 °C), respectively. The development of LCTs based on CNCs and aqueous processing methods provides a renewable pathway for designing high performance composites with ordered network structures and unique optical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.