Abstract

The kinetic paths of structural evolution and formation of block copolymer (BCP) particles are explored using dynamic self-consistent field theory (DSCFT). It is shown that the process-directed self-assembly of BCP immersed in a poor solvent leads to the formation of striped ellipsoids, onion-like particles and double-spiral lamellar particles. The theory predicts a reversible path of shape transition between onion-like particles and striped ellipsoidal ones by regulating the temperature (related to the Flory-Huggins parameter between the two components of BCP, χAB ) and the selectivity of solvent toward one of the two BCP components. Furthermore, a kinetic path of shape transition from onion-like particles to double-spiral lamellar particles, and then back to onion-like particles is demonstrated. By investigating the inner-structural evolution of a BCP particle, it is identified that changing the intermediate bi-continuous structure into a layered one is crucial for the formation of striped ellipsoidal particles. Another interesting finding is that the formation of onion-like particles is characterized by a two-stage microphase separation. The first is induced by the solvent preference, and the second is controlled by the thermodynamics. The findings lead to an effective way of tailoring nanostructure of BCP particles for various industrialapplications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call