Abstract

Control of the shape, size, internal structure, and uniformity of block copolymer (BCP) particles is crucial for determining their utility and functionality in practical applications. Here, we demonstrate a particle restructuring by solvent engineering (PRSE) strategy that combines membrane emulsification and solvent annealing processes to produce monodisperse BCP particles with controlled size, shape, and internal structure. A major advantage of the PRSE approach is the general applicability to different families of functional BCPs, including polystyrene-block-poly(1,4-butadiene) (PS-b-PB), polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS), and polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP). PRSE starts with the production of monodisperse BCP spheres in a wide range of particle sizes (from hundreds of nanometers to several tens of microns) using membrane emulsification, followed by successful transformation to shape-anisotropic BCP particles by solvent annealing under neutral wetting conditions. ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call