Abstract

We prove that the process of the most visited site of Sinai's simple random walk in random environment is transient. The rate of escape is characterized via an integral criterion. Our method also applies to a class of recurrent diffusion processes with random potentials. It is interesting to note that the corresponding problem for the usual symmetric Bernoulli walk or for Brownian motion remains open.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.