Abstract
We present a multiscale analysis for the exit measures from large balls in $$\mathbb{Z}^d, d\geq 3$$ , of random walks in certain i.i.d. random environments which are small perturbations of the fixed environment corresponding to simple random walk. Our main assumption is an isotropy assumption on the law of the environment, introduced by Bricmont and Kupiainen. Under this assumption, we prove that the exit measure of the random walk in a random environment from a large ball, approaches the exit measure of a simple random walk from the same ball, in the sense that the variational distance between smoothed versions of these measures converges to zero. We also prove the transience of the random walk in random environment. The analysis is based on propagating estimates on the variational distance between the exit measure of the random walk in random environment and that of simple random walk, in addition to estimates on the variational distance between smoothed versions of these quantities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.