Abstract
The principle of maximum entropy provides a powerful framework for estimating joint, conditional, and marginal probability distributions. However, there are many important distributions with elements of interaction and feedback where its applicability has not been established. This paper presents the principle of maximum causal entropy-an approach based on directed information theory for estimating an unknown process based on its interactions with a known process. We demonstrate the breadth of the approach using two applications: a predictive solution for inverse optimal control in decision processes and computing equilibrium strategies in sequential games.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.