Abstract

We present an extension to Jaynes’ maximum entropy principle that incorporates latent variables. The principle oflatent maximum entropywe propose is different from both Jaynes’ maximum entropy principle and maximum likelihood estimation, but can yield better estimates in the presence of hidden variables and limited training data. We first show that solving for a latent maximum entropy model poses a hard nonlinear constrained optimization problem in general. However, we then show that feasible solutions to this problem can be obtained efficiently for the special case of log-linear models---which forms the basis for an efficient approximation to the latent maximum entropy principle. We derive an algorithm that combines expectation-maximization with iterative scaling to produce feasible log-linear solutions. This algorithm can be interpreted as an alternating minimization algorithm in the information divergence, and reveals an intimate connection between the latent maximum entropy and maximum likelihood principles. To select a final model, we generate a series of feasible candidates, calculate the entropy of each, and choose the model that attains the highest entropy. Our experimental results show that estimation based on the latent maximum entropy principle generally gives better results than maximum likelihood when estimating latent variable models on small observed data samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.