Abstract
In the present communication entropy optimization principles namely maximum entropy principle and minimum cross entropy principle are defined and a critical approach of parameter estimation methods using entropy optimization methods is described in brief. Maximum entropy principle and its applications in deriving other known methods in parameter estimation are discussed. The relation between maximum likelihood estimation and maximum entropy principle has been derived. The relation between minimum divergence information principle and other classical method minimum Chi-square is studied. A comparative study of Fisher’s measure of information and minimum divergence measure is made. Equivalence of classical parameter estimation methods and information theoretic methods is studied. An application for estimation of parameter estimation when interval proportions are given is discussed with a numerical example. Key words: Parameter estimation, maximum entropy principle, minimum divergence measure, maximum likelihood estimation, minimum interdependence principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.