Abstract

The special theory of relativity and quantum mechanics merge in the key principle of quantum field theory, the principle of locality. We review some examples of its “unreasonable effectiveness” in giving rise to most of the conceptual and structural frame of quantum field theory, especially in the absence of massless particles. This effectiveness shows up best in the formulation of quantum field theory in terms of operator algebras of local observables; this formulation is successful in digging out the roots of global gauge invariance, through the analysis of superselection structure and statistics, in the structure of the local observable quantities alone, at least for purely massive theories; but so far it seems unfit to cope with the principle of local gauge invariance. This problem emerges also if one attempts to figure out the fate of the principle of locality in theories describing the gravitational forces between elementary particles as well. An approach based on the need to keep an operational meaning, in terms of localization of events, of the notion of space-time, shows that, in the small, the latter must loose any meaning as a classical pseudo-Riemannian manifold, locally based on Minkowski space, but should acquire a quantum structure at the Planck scale. We review the geometry of a basic model of quantum space-time and some attempts to formulate interaction of quantum fields on quantum space-time. The principle of locality is necessarily lost at the Planck scale, and it is a crucial open problem to unravel a replacement in such theories which is equally mathematically sharp, namely, a principle where the general theory of relativity and quantum mechanics merge, which reduces to the principle of locality at larger scales. Besides exploring its fate, many challenges for the principle of locality remain; among them, the analysis of superselection structure and statistics also in the presence of massless particles, and to give a precise mathematical formulation to the measurement process in local and relativistic terms; for which we outline a qualitative scenario which avoids the Einstein, Podolski, and Rosen paradox.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.