Abstract

BackgroundAnti-glomerular basement membrane disease (GBM) is an autoimmune disease caused by the deposition of circulating anti-GBM antibodies. Non-collagen region of α3 chain of type IV collagen (α3(IV)NC1) is one of the main target antigens, in which EA and EB are the most classical antigen epitopes. It has been reported that anti-GBM antibodies can be detected in HIV patients; however, its immunological characteristics are still unclear.ObjectivesIn this study, the positive rate of the anti-GBM antibodies in HIV and the immunological characteristics of the target antigens were clarified.MethodsA total of 93 HIV patients diagnosed in Beijing Youan Hospital from November 2017 to January 2018 were included. Enzyme-linked immunosorbent assay was used to measure the serum IgG autoantibodies specifically against GBM in these patients, as well as their subtypes and antigen spectra.ResultsIt was found that five out of the 93 patients with HIV had low to moderate levels of anti-GBM antibodies. However, these patients presented with no clinical manifestation of any kidney injury or pulmonary hemorrhages. Compared with HIV patients with negative antibodies, there were no significant differences in gender, age, CD4+T cell count and HIV viral load. All sera of five patients recognized non-collagenous domain1 (NC1) of alpha 3 chain of type IV collagen [(α3(IV)NC1] as classic anti-GBM patients, followed by α5(IV)NC1. The antibodies against α3(IV)NC1 were IgG3 predominant, while these antibodies did not react with either of the classic epitopes on α3 (EA and EB).ConclusionThese data suggest a distinct immunological profile of anti-GBM antibodies in patients with HIV, and might explain the non-pathogenic features of HIV associated anti-GBM antibodies.

Highlights

  • Anti-glomerular basement membrane disease (GBM) is an autoimmune disease caused by the deposition of circulating anti-GBM antibodies

  • Many kinds of autoantibodies can be detected in human immunodeficiency virus (HIV) infected patients, including anti-nuclear (ANA),anti-neutrophil cytoplasmic (ANCA) and anti-glomerular basement membrane (GBM) antibodies [4].Anti-GBM antibodies are pathogenic of the anti-GBM disease which often manifests as the aggressive crescentic glomerulonephritis [3]

  • In order to further elucidate the pathogenesis of these antibodies, we investigated, for the first time to our best knowledge, the immunological characteristics of the anti-GBM antibodies in HIV patients and their associations with clinical data

Read more

Summary

Introduction

Anti-glomerular basement membrane disease (GBM) is an autoimmune disease caused by the deposition of circulating anti-GBM antibodies. Many kinds of autoantibodies can be detected in HIV infected patients, including anti-nuclear (ANA),anti-neutrophil cytoplasmic (ANCA) and anti-glomerular basement membrane (GBM) antibodies [4].Anti-GBM antibodies are pathogenic of the anti-GBM disease which often manifests as the aggressive crescentic glomerulonephritis [3]. In most of the cases with anti-GBM antibodies detected in HIV patients, there were no obvious clinical manifestations of renal damage [4,5,6]. It is still in controversy whether these antibodies are pathogenic as the ones in classic anti-GBM patients. We measured the anti-GBM antibodies in the serum of HIV patients and analyzed, for the first time to our best knowledge, the immunological characteristics of these antibodies in order to provide some clues

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.