Abstract

Seizures have a profound impact on quality of life and mortality, in part because they can be challenging both to detect and forecast. Seizure detection relies upon accurately differentiating transient neurological symptoms caused by abnormal epileptiform activity from similar symptoms with different causes. Seizure forecasting aims to identify when a person has a high or low likelihood of seizure, which is related to seizure prediction. Machine learning and artificial intelligence are data-driven techniques integrated with neurodiagnostic monitoring technologies that attempt to accomplish both of those tasks. In this narrative review, we describe both the existing software and hardware approaches for seizure detection and forecasting, as well as the concepts for how to evaluate the performance of new technologies for future application in clinical practice. These technologies include long-term monitoring both with and without electroencephalography (EEG) that report very high sensitivity as well as reduced false positive detections. In addition, we describe the implications of seizure detection and forecasting upon the evaluation of novel treatments for seizures within clinical trials. Based on these existing data, long-term seizure detection and forecasting with machine learning and artificial intelligence could fundamentally change the clinical care of people with seizures, but there are multiple validation steps necessary to rigorously demonstrate their benefits and costs, relative to the current standard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.