Abstract

Vascular endothelial growth factor (VEGF) is a potent cytokine that binds to specific receptors on the endothelial cells lining blood vessels. The signaling cascade triggered eventually leads to the formation of new capillaries, a process called angiogenesis. Distributions of VEGF receptors and VEGF ligands are therefore crucial determinants of angiogenic events and, to our knowledge, no quantification of abluminal vs. luminal receptors has been performed. We formulate a molecular-based compartment model to investigate the VEGF distribution in blood and tissue in humans and show that such quantification would lead to new insights on angiogenesis and VEGF-dependent diseases. Our multiscale model includes two major isoforms of VEGF (VEGF121 and VEGF165), as well as their receptors (VEGFR1 and VEGFR2) and the non-signaling co-receptor neuropilin-1 (NRP1). VEGF can be transported between tissue and blood via transendothelial permeability and the lymphatics. VEGF receptors are located on both the luminal and abluminal sides of the endothelial cells. In this study, we analyze the effects of the VEGF receptor localization on the endothelial cells as well as of the lymphatic transport. We show that the VEGF distribution is affected by the luminal receptor density. We predict that the receptor signaling occurs mostly on the abluminal endothelial surface, assuming that VEGF is secreted by parenchymal cells. However, for a low abluminal but high luminal receptor density, VEGF binds predominantly to VEGFR1 on the abluminal surface and VEGFR2 on the luminal surface. Such findings would be pertinent to pathological conditions and therapies related to VEGF receptor imbalance and overexpression on the endothelial cells and will hopefully encourage experimental receptor quantification for both luminal and abluminal surfaces on endothelial cells.

Highlights

  • Physiologic angiogenesis, the growth of new capillaries from pre-existing blood vessels, occurs in wound healing, pregnancy, exercise, and embryonic development

  • The growth of new capillaries from pre-existing blood vessels is mediated by several growth factors, one of which is a potent family of cytokines called vascular endothelial growth factor (VEGF)

  • Angiogenesis is the growth of new blood vessels from preexisting vasculature that occurs in physiological and pathological contexts

Read more

Summary

Introduction

Physiologic angiogenesis, the growth of new capillaries from pre-existing blood vessels, occurs in wound healing, pregnancy, exercise, and embryonic development. Diseases such as cancer and age-related macular degeneration are angiogenesis-dependent [1]. The roles of VEGF189 and VEGF206 in vivo remain to be clearly identified [3] For these reasons, we only consider VEGF121 and VEGF165 isoforms in the present model. Preliminary sensitivity analyses from our group suggest that incorporation of the binding between VEGF121 and NRP1 does not drastically change the predictions regarding the VEGF distribution [7] This binding is not included in the model at the moment; this can be modified when more information becomes available. VEGF165 contains a heparin binding domain, which allows it to bind to the heparan sulfate glycosaminoglycan (GAG) chains of the extracellular matrix and the cellular basement membranes [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call