Abstract

In this article the methodology of the design of suitable background electrolytes (BGEs) in capillary zone electrophoresis (CZE) is described. The principal aspects of the role of a BGE in CZE are discussed with respect to an appropiate migration behavior of analytes, including the transport of the electric current, the buffering of pH, the Joule heat, the electro-endosmotic flow (EOF) and the principal migration and detection modes. The impact of the composition of the BGE upon migration and detection is discussed. It is shown that the total concentration of the BGE is a principal factor and the adjustment of migrating analyte zones according to the Kohlrausch regulating function (KRF) is the principal effect in most of the sample stacking techniques. The number of co-ions and their properties are of key importance for peak shapes of the analyte peaks and for the existence of system zones. The detection of UV-transparent analytes may advanteously be done in the indirect UV mode, by using UV-absorbing co-ions, however, both peaks and dips may be expected in the UV trace in case of multiple co-ionic BGEs. Properties of BGEs can be predicted applying mathematical models and it is shown that with SystCharts, predictions can be given concerning the existence of system zones, detection modes and the peak shapes of analytes for a given BGE. Practical examples of methodological considerations are given in the design of suitable BGEs for four principal combinations of migration and detection modes. The properties of the BGEs selected are exemplified with experimental results. Golden rules are summarized for the preparation of suitable BGEs in CZE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call