Abstract

Uniformly [(13)C(20)]-labeled all-trans-retinal (1) has been prepared via a convergent modular total organic strategy with high isotope incorporation (>99%) and without isotope dilution starting from commercially available 99% enriched (13)C-labeled starting materials. For this purpose we have developed a strategy that is based on four different modules: [1,2,3,4,(3-CH(3))-(13)C(5)]-4-(diethylphosphono)-3-methyl-2-butenenitrile (3), [1,2,3,4-(13)C(4)]-ethyl acetoacetate (7), [U-(13)C(5)]-4-bromo-2-methyl-2-butene (13), and [U-(13)C(10)]-2,6,6-trimethylcyclohex-2-ene-1-ylcarbonitrile (16). This scheme permits the synthesis of the full cassette of all isotopomers with (13)C-labels at any position or combination of positions by using different (13)C-labeled starting materials. In addition, modifications of the synthesized modules will give access to a broad range of chemically modified (13)C-labeled retinoids and carotenoids. This modular strategy enables the synthesis of multifold and uniformly stable isotopically labeled (bio)macromolecules that can be used for studying proteins with atomic resolution, providing detailed functional information of the studied biological system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.