Abstract

To remove hexavalent chromium Cr(vi) efficiently, a novel Fe–Mn binary oxide adsorbent was prepared via a “two-step method” combined with a co-precipitation method and hydrothermal method. The as-prepared Fe–Mn binary oxide absorbent was characterized via transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectra (FTIR), thermogravimetric analysis (TGA), zeta potential, BET and X-ray photoelectron spectroscopy (XPS). The results indicated that the morphology of the adsorbent was rod-like with length of about 100 nm and width of about 50–60 nm, specific surface area was 63.297 m2 g−1, has the composition of α-Fe2O3, β-MnO2 and MnFe2O4 and isoelectric point was observed at pH value of 4.81. The removal of Cr(vi) was chosen as a model reaction to evaluate the adsorption capacity of the Fe–Mn binary oxide adsorbent, indicating that the Fe–Mn binary oxide adsorbent showed high adsorption performance (removal rate = 99%) and excellent adsorption stability (removal rate > 90% after six rounds of adsorption). The adsorption behavior of the Fe–Mn binary oxide was better represented by the Freundlich model (adsorption isotherm) and the pseudo-second-order model (adsorption kinetic), suggesting that the adsorption process was multi-molecular layer chemical adsorption. The possible adsorption mechanism of the Fe–Mn binary oxide for the removal of Cr(vi) included the protonation process and the electrostatic attraction interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.