Abstract
The nanoMgO and active nanoSiO2 were prepared by the special liquid-phase precipitation method. Subsequently, Chrysotile nanotube was prepared of by hydrothermal method using the nanoMgO and active nanoSiO2 as precursors at 220°C under 23atm in basic solution. The surface topographies and composition of the Chrysotile nanotube were characterized by XRD and TEM. Then, the dispersive property of particles modified by oleic acid was analyzed by IR. The tribological properties) were explored by adding the modified nanomagnesium silicate hydroxide to 2# lithic-grease after dispersing uniformly. Compared with the blank sample, it can significantly reduce the friction traces of the metal surface, improve extreme pressure performance. The friction coefficient is still stable when the temperature is raised during the friction. Nanotube power can be adhered and spread on the worn metal surface. Thus self-repairing coating forms on the worn surface.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have