Abstract

In order to study the rheological behavior of long chain branching (LCB) polypropylene (PP), linear polypropylene was modified by melt grafting reaction in the presence of 2,5-dimethyl-2,5( tert-butylperoxy) hexane peroxide and pentaerythritol triacrylate (PETA) in mixer. The transient torque curves and Fourier transformed infrared spectroscopy (FTIR) results indicated that macroradical recombination reactions took place and PETA had been grafted onto PP backbone. Various rheological plots including viscosity curve, storage modulus, loss angle, Han plot, Cole–Cole plot were used to distinguish LCB PP from linear PP. On the other hand, to quantify the LCB level in modified PPs, a new method was suggested on the basis of macromolecular dynamics models. The results showed that the level of LCB was in the range of 0.025–0.38/10 4 C . Moreover, the length of the branched chains and the content of the branched component increase with PETA concentration. Furthermore, the LCB efficiency of monomer can also be calculated, less than 20% of grafting monomers was used to form branch structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call