Abstract

In the present study, in order to improve the properties of nanostarch-based nanocomposite film for food packaging, a type of nanocomposite film based on corn nanostarch (CNS) as the matrix and modified cellulose nanocrystals (modified-CNCs) as the reinforcement was prepared using a solution casting method. The cellulose nanocrystals (CNCs) were modified by a two-step method in which they were initially crosslinked with citric acid, and subsequently amidated with chitosan. Then, a type of CNS/modified-CNCs nanocomposite film with different content levels of modified-CNC were prepared and characterized using Fourier Transform Infrared spectroscopy (FTIR); X-ray Photoelectron Spectroscopy (XPS); X-Ray Diffraction (XRD); Differential Scanning Calorimetry (DSC); and Scanning Electron Microscopy (SEM). It was observed that when compared with the pure CNS film, the 8.0 wt% modified-CNCs loaded nanostarch-based nanocomposite film had displayed a 230.0% increase in tensile strength. And the moisture absorption ability had decreased by 25.6%; water vapor permeability had decreased by 87.4%; and the water contact angle value had increased by 18.1%. Also the results of this experimental study had revealed that the CNS/modified-CNCs nanocomposite film had displayed better antimicrobial activities against E. coli and S. aureus bacteria when compared with the pure CNS film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call