Abstract

The control and the execution of motor tasks are largely influenced by proprioceptive feedback, i.e. the information about the position and movement of the body. In 1972, it was discovered that a vibratory stimulation applied non-invasively to a muscle or a tendon induces a movement illusion consistent with the elongation of the vibrated muscle/tendon. Although this phenomenon was reported by several studies, it is still unclear how to reliably reproduce it because of the many different features of the stimulation altering the sensation (e.g. frequency, duration, location). By performing a psychophysical test, we analysed the effects of the stimulation point and the preload force on the minimum stimulation amplitude needed to elicit an illusion of movement. In particular, we stimulated two groups of healthy subjects on three target regions of the biceps brachii muscle (the distal tendon, the muscle belly and one of the proximal tendons) applying three preload force ranges (0.5–0.75N, 1–2N and 3–4N). Our results showed that the minimum stimulation amplitude eliciting a sensation is affected by the preload force. On the contrary, it did not change significantly among the three stimulated regions. Nevertheless, the reported vividness of the illusion of movement changed across the stimulated points decreasing while moving from the distal to the proximal tendons. Overall, these outcomes contribute to the scientific debate on the features that modulate the vibration-induced movement illusion proposing ways to increase the reliability of the procedure in basic and applied research studies.

Highlights

  • Proprioception refers to the ability to sense the position and movement of one’s own body (Sherrington 1906)

  • In this study we investigated how the stimulation point and the preload force (PF) affected the minimum stimulation amplitude needed to elicit an illusion of movement

  • In the first part of this section, we present the mechanical characterization of the vibrator while it is in contact with the skin

Read more

Summary

Introduction

Proprioception refers to the ability to sense the position and movement of one’s own body (Sherrington 1906). This sensation is mediated by several biological receptors: mechanoreceptors in the skin, joint capsule receptors, Golgi tendon organs between skeletal muscles and tendons, and spindles within the skeletal muscles belly (Kandel 2013). These receptors provide proprioceptive sensory feedback to the central nervous system, which uses it to refine balance and movements. Albeit it is known that such receptors are sensitive to skin stretch around the joints (Collins et al 2005) and to changes of muscle length and tension, the specific role of each class of receptors in encoding proprioceptive information is still a matter of debate (Marasco et al 2017).

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.