Abstract

In this study, different modelling techniques such as multiple regression and adaptive neuro-fuzzy inference system (ANFIS) are used for predicting the ultimate pure bending of concrete-filled steel tubes (CFTs). The behaviour of CFT under pure bending is complex and highly nonlinear; therefore, forward modelling techniques can have considerable limitations in practical situations where fast and reliable solutions are required. Linear multiple regression (LMR), nonlinear multiple regression (NLMR) and ANFIS models were trained and checked using a large database that was constructed and populated from the literature. The database comprises 72 pure bending tests conducted on fabricated and cold-formed tubes filled with concrete. Out of 72 tests, 48 tests were conducted by the second author. Input variables for the models are the same with those used by existing codes and practices such as the tube thickness, tube outside diameter, steel yield strength, strength of concrete and shear span. A practical application example, showing the translation of constructed ANFIS model into design equations suitable for hand calculations, was provided. A sensitivity analysis was conducted on ANFIS and multiple regression models. It was found that the ANFIS model is more sensitive to change in input variables than LMR and NLMR models. Predictions from ANFIS models were compared with those obtained from LMR, NLMR, existing theory and a number of available codes and standards. The results indicate that the ANFIS model is capable of predicting the ultimate pure bending of CFT with a high degree of accuracy and outperforms other common methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.