Abstract
The primary objectives of this study are to develop two roundabout entry capacity models using a regression-based multiple non-linear regression model (MNLR) and artificial intelligence (AI)-based ANFIS (adaptive neuro-fuzzy inference system) model under heterogeneous traffic conditions. ANFIS is the latest technique in the field of AI that integrates both neural networks and fuzzy logic principles in a single framework. Required data have been collected from 27 roundabouts in eight states of India. To assess the significance of these models and select the best model among them, modified rank index is applied in this study. The coefficient of determination ( R2) and Nash–Sutcliffe model efficiency coefficient ‘ E’ values are found to be 0.92, 0.91 and 0.98, 0.98 for the MNLR and ANFIS model, respectively. The ANFIS model is found to be the best model in this study. However, from a practical point of view, the MNLR model is recommended for determining roundabout entry capacity under heterogeneous traffic conditions. Sensitivity analysis reports that critical gap is the prime variable and shares 18.43% for the development of roundabout entry capacity. As compared with the Girabase formula (France), Brilon wu formula (Germany), and HCM 2010 models, the proposed MNLR model is quite reliable under low to medium ranges of traffic volumes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.