Abstract

A theory is given for the thermal-hydraulic phenomena during uncovery of a flow channel. This is relevant to a reactor core under typical small break or operational transient conditions. A distinct equivalent collapsed liquid level and a two-phase-mixture level are defined in the model. The former represents the liquid inventory in the channel, while the latter characterizes the heat transfer regimes. The definition of these levels are coupled through the mass and energy conservation equations, and the constitutive relations for void fraction and net vapor generation location. Analytical solutions are obtained for the transient variation of both the collapsed liquid and the two-phase mixture levels. The analyses have been compared with existing single-tube data with uniform heat flux, and rod bundle experiments with an axial power profile and inlet feedwater flow. The results demonstrate the potential of the present model for application to reactor conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.