Abstract
The linear lambda calculus is very weak in terms of expressive power: in particular, all functions terminate in linear time. In this paper we consider a simple extension with Booleans, natural numbers and a linear iterator. We show properties of this linear version of Godel’s System $\mathcal{T}$ and study the class of functions that can be represented. Surprisingly, this linear calculus is extremely expressive: it is as powerful as System $\mathcal{T}$
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.