Abstract
A lambda term is linear if every bound variable occurs exactly once. The same constant may occur more than once in a linear term. It is known that higher-order matching in the linear lambda calculus is NP-complete (de Groote 2000), even if each unknown occurs exactly once (Salvati and de Groote 2003). Salvati and de Groote (2003) also claim that the interpolation problem, a more restricted kind of matching problem which has just one occurrence of just one unknown, is NP-complete in the linear lambda calculus. In this paper, we correct a flaw in Salvati and de Groote's (2003) proof of this claim, and prove that NP-hardness still holds if we exclude constants from problem instances. Thus, multiple occurrences of constants do not play an essential role for NP-hardness of higher-order matching in the linear lambda calculus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.