Abstract

BackgroundThe regulation of gonadotropin synthesis and release by gonadotropin­releasing hormone (GnRH) plays an essential role in the neuroendocrine control of reproduction. However, the mechanisms underlying gonadotropin regulation by GnRH pulse frequency and amplitude are still ambiguous. This study aimed to explore the molecular mechanisms and biological pathways associated with gonadotropin synthesis by GnRH pulse frequencies and amplitudes.MethodsUsing GSE63251 datasets downloaded from the Gene Expression Omnibus (GEO), differentially expressed genes (DEGs) were screened by comparing the RNA expression from the GnRH pulse group, the GnRH tonic group and the control group. Pathway enrichment analyses of DEGs was performed, followed by protein-protein interaction (PPI) network construction. Furthermore, sub-network modules were constructed by ClusterONE and GO function and pathways analysed by DAVID. In addition, the relationship between the metabolic pathways and the GnRH pathway was verified in vitro.ResultsIn total, 531 common DEGs were identified in GnRH groups, including 290 up-regulated and 241 down-regulated genes. DEGs predominantly enriched in 16 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including 11 up-regulated pathways (signallingsignallingmetabolic pathways, signallingand GnRH signalling pathway) and 5 down-regulated pathways (type II diabetes mellitus). Moreover, FBJ osteosarcoma oncogene (FOS) and jun proto-oncogene (JUN) had higher connectivity degrees in the PPI network. Three modules in the PPI were identified with ClusterONE. The genes in module 1 were significantly enriched in five pathways, including signallingthe insulin resistance and GnRH signalling pathway. The genes in modules 2 and 3 were mainly enriched in metabolic pathways and steroid hormone biosynthesis, respectively. Finally, knockdown leptin receptor (LEPR) and insulin receptor (INSR) reversed the GnRH-modulated metabolic related-gene expression.ConclusionsThe present study revealed the involvement of GnRH in the regulation of gonadotropin biosynthesis and metabolism in the maintenance of reproduction, achieved by bioinformatics analyses. This, indicates that the GnRH signalling pathway played a central linkings role in reproductive function and metabolic balance. In addition, the present study identified the difference response between GnRH pulse and GnRH tone, indicated that abnormal GnRH pulse and amplitude may cause disease, which may provide an improved understanding of the GnRH pathway and a new insight for disease diagnosis and treatment.

Highlights

  • The regulation of gonadotropin synthesis and release by gonadotropinreleasing hormone (GnRH) plays an essential role in the neuroendocrine control of reproduction

  • Gonadotropin synthesis and release is dependent upon pulsatile stimulation by the hypothalamic neuropeptide GnRH

  • Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that GnRH pulse treatment activated the unique pathways. These pathways are involved in hypertrophic cardiomyopathy, dilated cardiomyopathy, alzheimer’s disease, as well as the calcium signalling pathway. These results further indicated that abnormal GnRH pulse and amplitude may cause disease, which may provide an improved understanding of the GnRH pathway and a new insight for disease diagnosis and treatment

Read more

Summary

Introduction

The regulation of gonadotropin synthesis and release by gonadotropinreleasing hormone (GnRH) plays an essential role in the neuroendocrine control of reproduction. Regulation of the reproductive system is initiated by an array of external and internal inputs, such as photoperiod, metabolic products and nutrients, growth factors, stress, infection and inflammation, as well as many central and peripheral growth factors and hormones. These inputs are integrated in the brain and hypothalamus to regulate the biosynthesis and secretion of gonadotropinreleasing hormone GnRH [2]. LH and FSH act on the ovary and testis to stimulate the production of gametes, and steroid and peptide hormones [8] These hormones positively and negatively feedback at the hypothalamus and pituitary level, regulating the reproductive hormone cascade [8]. Understanding the molecular mechanisms involved in the response of gonadotropins to GnRH may help discover new therapeutic targets for reproductive disorders and hormone-dependent malignancies

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call