Abstract

Landfill gas produces ozone precursors such as nitrogen oxides and formaldehyde when combusted in flares or stationary engines. Solid waste landfills are also the third largest anthropogenic source of methane in the United States. Methane is both a greenhouse gas and a tropospheric ozone precursor. Despite its low photochemical reactivity, methane may noticeably affect urban ozone if released in large quantities along with other organic compounds in landfill gas. A fine-scale 3D Eulerian chemical transport model was used to demonstrate that, under meteorological and background chemical conditions conducive to high ozone concentrations, typical emissions of ozone precursors from a single hypothetical landfill may result in persistent daytime additions to ozone of over 1 part per billion (ppb) by volume tens of kilometers downwind. Large leaks of landfill gas can enhance this ozone pollution by over a tenth of a ppb, and external sources of non-methane ozone precursors may further exacerbate this impact. In addition, landfill gas combustion may increase near-source exposure to toxic formaldehyde by well over half a ppb. In Southeast Michigan, the combined influence of several landfills upwind of key monitoring sites may contribute significantly to observed exceedances of the U.S. ozone standard.

Highlights

  • Emissions in the United States [1]

  • The tool used in this study to demonstrate the potential ozone impacts of landfills was a fine-scale 3D Eulerian air quality model known as the Microscale Forward and Adjoint Chemical Transport (MicroFACT) model

  • The ozone impacts of the hypothetical landfill are the presented in the context

Read more

Summary

Introduction

Methane is a greenhouse gas with an atmospheric lifetime of about 9 years [2]. It is a global ozone (O3 ) precursor due to its ability to alter the balance of tropospheric radicals. West and Fiore [3] suggested that a 17% decrease in world emissions of methane may result in a 1 part per billion (ppb) by volume average reduction in global tropospheric ozone. Phillips et al [7] identified 3356 methane leaks in Boston from measured ambient air concentrations exceeding up to 15 times the current global background level of over 1.8 parts per million (ppm) by volume [8]. Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call