Abstract
The objectives of this research were to study the association in bread wheat between spectral reflectance indices (SRIs) and grain yield, estimate their heritability, and correlated response to selection (CR) for grain yield estimated from SRIs under reduced irrigation conditions. Reflectance was measured at three different growth stages (booting, heading and grainfilling) and five SRIs were calculated, namely normalized difference vegetation index (NDVI), simple ratio (SR), water index (WI), normalized water index-1 (NWI-1), and normalized water index-2 (NWI-2). Three field experiments were conducted (each with 30 advanced lines) in three different years. Two reduced irrigation environments were created: (1) one-irrigation level (pre-planting), and (2) two-irrigation level (pre-planting and at booting stage), both representing levels of reduced moisture. Maximum yield levels in the experimental zone were generally obtained with 4–6 irrigations. Genotypic variations for all SRIs were significant. Three NIR (near infrared radiation) based indices (WI, NWI-1, and NWI-2) gave the highest level of association (both phenotypic and genotypic) with grain yield under both reduced irrigation environments. Use of the mean SRI values averaged over growth stages and the progressive integration of SRIs from booting to grainfilling increased the capacity to explain variation among genotypes for yield under these reduced irrigation conditions. A higher level of broad-sense heritability was found with the two-irrigation environment (0.80) than with the one-irrigation environment (0.63). Overall, 50% to 75% of the 12.5% highest yielding genotypes, and 50% to 87% of the 25% highest yielding genotypes were selected when the NWI-2 index was applied as an indirect selection tool. Strong genetic correlations, moderate to high heritability, a correlated response for grain yield close to direct selection for grain yield, and a very high efficiency of selecting superior genotypes indicate the potential of using these three SRIs in breeding programs for selecting increased genetic gains in grain yield under reduced irrigation conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.