Abstract
This study examined the usefulness of 15N natural abundance (δ15N) with in situ core incubation to quantify the predominant N transformation processes in a natural suburban forest of subtropical Australia, which was subjected to prescribed burning. In situ core incubation for 3 days with 20 ml water, or 160.79 ml of 60 mg L−1 NO3−-N surface application, and in situ core with 160.79 ml water but without incubation were set up in Toohey forest for sampling three times as before (once) and after (twice) a prescribed burning. The δ15N of NH4+-N and NO3−-N in the top 5 cm soil before and after the incubation, and δ15N of NO3−-N in the 5–10 cm soil before incubation were compared with each other to examine the soil N mineralisation, nitrification, denitrification, and nitrate leaching processes. The significant decrease in δ15N of NH4+-N after incubation under 20 ml water treatment was ascribed to soil N mineralisation, and the significant decrease in δ15N of NH4+-N and significant increase in δ15N of NO3−-N after incubation with elevated water and nitrate inputs were associated with N mineralisation and nitrification, respectively, 2 months after the burning. The 160.79 ml water treatment also triggered nitrification in the baseline soil cores in both samplings after the burning. Water was crucial to stimulate soil N mineralisation and nitrification, but excessive water depleted labile N pools and reduced N mineralisation and nitrification. Burning effects were hard to separate from the seasonal impacts on soil N cycling processes. The δ15N in soil mineral N pools was sensitive to indicate soil N mineralisation and nitrification processes. Soil water and labile N were determining factors for N transformations in the soil. It is suggested that δ15N combined with soil inorganic N concentrations and net N transformation rates could be used to identify primary N transformation processes. More frequent samplings would be needed to differentiate burning impacts from the seasonal impacts on soil N cycling processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have