Abstract
Organic coatings are interesting to study as one of the affordable and highly effective anti-corrosion coating techniques. Organic coating associated with nanocomposite fillers in the form of Cellulose nanocrystal (CNC) of different shapes, sizes, types, and sources that are used to enhance the coating performance. CNC’s linear structure, composed of β-(1, 4)-D-glucose polymeric chain, contributes to the growth of microfibrils in crystalline cellulose. CNC’s high thermal stability and mechanical strength provide an exceptional cross-linked network in polymer matrices as a coating. Organic coating techniques have been shown to improve corrosion resistance and other coating properties through various mechanisms. This article explores inorganic and organic-based polymer nanocomposite coatings as a solution to protect metal substrates from corrosion protection. The review also outlines how bio-based materials, as nano-fillers in various polymers, with various advantages. Combining with other nanomaterials in the polymer and functional group modifications capable of enhancing hydrophobic properties and outstanding bonding ability with the polymer matrix are expected to yield promising performance as barrier coatings against corrosive species. This study concludes that bio-based nanomaterials with intrinsic properties such as low density, high aspect ratio, outstanding mechanical properties, biocompatibility, and biodegradability are important reasons for these materials to be used for anti-rust nanocomposite applications and have great potential to be developed as nanofillers in nanocomposite polymer matrices in high-performance metal coatings and various applications in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.